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Abstract

This chapter provides an overview of prior and prospective work related to the control of

assistive robotics and prostheses via direct measurements of brain activity. Specifically, this

chapter focuses on brain-controlled robotic devices that replace, supplement, or restore lost

motor function. The chapter introduces noninvasive and invasive brain signal recording

modalities, common brain-actuated control signals, and a survey of applications in assistive

robotics and prosthetics. The chapter concludes with a discussion of current challenges and

future prospects of these technologies.
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1 Introduction

This chapter provides an overview of prior and prospective work related to the control of

assistive robotics and prostheses via direct measurements of brain activity. Specifically, this

chapter focuses on brain-controlled robotic devices that replace, supplement, or restore lost

motor function [100]. The chapter does not include brain-controlled robotic devices that

have been developed for rehabilitation or therapeutic applications, which are included in

Chapter 6. The present chapter introduces noninvasive and invasive brain signal recording

modalities, common brain-actuated control signals, and a survey of applications in assistive

robotics and prosthetics. The chapter concludes with a discussion of current challenges and

future prospects of these technologies.

2 Brain-Computer/Brain-Machine Interfaces

A brain-computer interface (BCI) is a system that directly translates neuronal signals into

actionable inputs for an external device, as shown in Figure 1. The term BCI is generally

synonymous with brain-machine interface (BMI), with the terms emerging from the noninva-

sive and invasive research communities, respectively. This general field of research originated

as a means to help severely disabled individuals (e.g., suffering from late-stage amyotrophic

lateral sclerosis (ALS) or brainstem stroke) communicate and perform tasks of daily living

[98]. While the field has since evolved to include other non-medical applications, there is

still significant focus on medical applications of BCI.

Because the impetus for BCIs was to restore, replace, or supplement lost function, much

of the early work was focused on controlling motor prostheses, orthotics, and assistive devices

[81]. Ideally, the ultimate objective is to completely restore natural motor function that has

been lost by the user. However, approaching such naturalistic and transparent control in

practice requires precise measurement of large-scale neural activity that can currently only

be achieved via invasive measurements of brain activity (e.g., surgical implantation of high-
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Figure 1: Block diagram of a brain-computer interface (BCI).

density electrodes into the brain).

Due to the inherent risks of surgical implants, much of the research has been conducted

in animal models (primarily non-human primates [12, 13, 52, 95]) and, in special cases, on

humans undergoing surgical procedures for intractable epilepsy and glioma removal [31, 78].

Additionally, there have been a limited number of long-term human implants exclusively for

BCI research [17, 23, 27, 45, 96]. In contrast, current modalities for noninvasive measurement

of brain activity cannot provide sufficient fidelity to achieve natural, refined control of a motor

prosthetic. Nevertheless, the ability to control assistive devices with as few as 2-3 degrees of

freedom, e.g., wrist rotation and hand grasp, has the potential to greatly improve the user’s

performance on activities of daily living [29].

Broadly, there are two classes of brain activity measurements that are relevant for such

applications: (1) electrophysiological and (2) hemodynamic. Hemodynamic activity can be

measured with functional magnetic resonance imaging (fMRI), positron emission tomography
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(PET), and functional near-infrared imaging (fNIRS). Because of the comparatively slow

hemodynamic response on the order of 1-2 seconds, and the impractical size and cost of

the devices for independent daily use (in the case of fMRI and PET), these modalities are

generally not well-suited for real-time robotic control applications.

Conversely, electrophysiological measurements of brain activity provide response times

on the order of milliseconds and can be designed to be portable or fully-implantable, making

them suitable for real-time control and independent daily use. The established modalities

for invasively and noninvasively acquiring electrical brain activity for BCI applications are

described below.

2.1 Invasive Recordings

There are three general categories of implanted electrodes, characterized by the method of

implantation, depth of penetration, and size of the recording contacts. The most commonly

used types of implanted electrodes are shown in Figures 2A-C.

2.1.1 Microelectrodes

Microelectrodes are penetrating electrodes designed to record from individual neurons, com-

monly referred to as single units. Most modern microelectrodes are configured as arrays

of needle-like probes with electrodes along the shafts of each probe [14]. The electrodes

generally have surface areas and spacings on the order of 1-10 µm and are fabricated using

silicon substrates. Individual microelectrode arrays are typically designed for sampling tens

of hundreds [55, 89], and potentially thousands [41, 68], of neurons simultaneously.

Ideally, each microelectrode contact will measure action potentials from a single neuron.

In practice, only a subset of contacts will yield clean recordings of action potentials from

individual neurons. Otherwise, contacts can also measure local field potentials (LFPs),

representing a superposition of electrical activity from surrounding neurons.

The acquisition of action potentials from a population of neurons in the motor cortex
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Figure 2: Types of invasive/noninvasive electrodes. (A) Microelectrode array; individual
electrode tip; implanted electrode. (B) ECoG grid during craniotomy; post-op CT. (C)
sEEG electrode with microwires at tip; view of scalp after implantation; post-op CT. (D)
Wet EEG electrode; EEG electrode cap; dry EEG electrode.

can precisely determine movement intentions based on a phenomenon known as population

coding [26]. Put simply, individual neurons in the motor cortex have been shown to have

firing rates that follow a cosine tuning curve, where the firing rate of each neuron maximally

corresponds to a preferred direction of movement and minimally corresponds to movements

in the opposite direction (i.e., 180 degrees), with intermediate directions following a cosine

curve (as shown in Figures 3 A-B). By sampling a sufficient number of neurons in the motor

cortex, shown to be as few as 10-100 [33], continuous motor movements can be accurately

reconstructed by taking the vector sum of the predicted movement directions for each neuron

in the population as prescribed by the predetermined tuning curves (Figure 3C). Because the
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resulting control signal represents a fairly direct mapping of the measured neuronal function,

this approach yields naturalistic control of motor prostheses [17].

Figure 3: Population coding of cortical motor neurons. (A) Hand reaching directions and
associated spike raster plots from a single neuron. (B) Corresponding cosine tuning curve
for the neuron. (C) Predicted direction vectors (red) based on the individual tuning curves
of a population of neurons. Adapted from [26].

2.1.2 ECoG and sEEG

Electocorticography (ECoG) uses comparatively larger disk electrodes in rectangular arrays

or strips placed on the cortical surface via a craniotomy [78]. The standard clinical electrodes

are 5 mm in diameter with 1 cm spacing between contacts, although microECoG arrays also

have been used with diameters and spacings on the order of tens of microns [43]. While

ECoG does not penetrate the brain or record single unit activity, it can provide detailed

information for decoding sensory, motor, and cognitive processes for a BCI. ECoG recording

provide signals that are morphologically similar to LFPs with spectral bandwidth of roughly
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0-250 Hz. ECoG is used clinically for localizing and mapping as part of surgical planning

for intractable epilepsy and intraoperatively for glioma removal. To minimize the extent of

the required craniotomy, ECoG grid placement is typically localized to particular cortical

areas associated with the patient’s pathology, typically on a single hemisphere. For clinical

purposes, the number of implanted ECoG electrodes typically ranges from 16-128, depending

on the nature and location of the pathology.

A related technology employed for epileptic seizure localization is stereotactic EEG

(sEEG) [31]. sEEG electrodes are positioned along a cylindrical shaft (∼1 mm diameter),

which is inserted deeper into the brain through small burr holes in the skull using stereotac-

tic guidance. The surface area, number of electrodes implanted, and nature of the measured

signals of sEEG for clinical purposes are roughly comparable to ECoG, although higher den-

sity contacts and microwires can be used. While, in contrast to ECoG, sEEG electrodes

penetrate brain tissue, there is evidence that the procedures are as effective as ECoG and

have improved surgical recovery outcomes compared to the craniotomy required for ECoG.

Also, unlike the single, localized craniotomy for ECoG, the comparatively minute burr holes

for sEEG electrodes allows for a broader but sparse sampling of both superficial and deeper

brain structures. This creates a trade-off for investigating and utilizing specific brain regions

and networks compared to the generally superior local cortical resolution provided by ECoG.

While the traditional lower-frequency rhythms can be observed in intracranial recordings,

one unique and commonly used feature of ECoG/sEEG signals for BCI control is broadband

gamma activity [62]. This activity manifests as roughly uniform fluctuations in the signal

spectrum over the approximate range of 70-250 Hz, which resembles a broadband noise

process and is not practically observable in scalp EEG, as illustrated in Figure 4. This activity

has been shown to be highly correlated with a wide variety of cognitive and behavioral

function. It is important to note that, while high frequency oscillations exist, broadband

gamma is generally not considered a brain oscillation akin to lower frequency gamma (∼40-

70 Hz) or the traditional lower-frequency EEG bands below 40 Hz (i.e., delta, theta, alpha,
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beta)[64].

Figure 4: EEG power spectral bands for hand movement versus rest [63].

2.1.3 Other Implanted Electrodes

One of the earliest demonstrations of invasive BCI control in humans was using neurotrophic

electrodes [45]. Neurotrophic electrodes consist of a 1-2 mm hollow glass cone attached to

several gold conductive wires. The electrode is filled with trophic factors to encourage

the growth of axons and dendrites into the cone [44]. Unique features of neurotrophic

electrodes are their ability to isolate and record from single or small groups of neurons

and their biocompatibility for long-term implantation [25]. However, compared to modern

microelectrode arrays, neurotrophic electrodes have not been designed to conveniently sample

larger numbers of neurons and have therefore not been widely adopted for BCI research.

More recently, an endovascular thin-film stent-electrode array was implanted in the supe-

rior sagittal sinus adjacent to the primary motor cortex of two participants with amyotrophic

lateral sclerosis (ALS) [70]. This sensor array, known as a stentrode, consists of 17 circum-

ferential sensors on a 8 mm × 40 mm monolithic, self-expanding nitinol scaffold designed for

minimally invasive intracranial delivery using catheter venography. The array is connected

to a 50 cm flexible transvascular lead and inserted into an inductively powered wireless
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telemetry unit. For this feasibility study, the participants were able to successfully perform

a typing task using attempted movements in combination with an eye-tracker for cursor

navigation [70].

2.2 Noninvasive Recordings

The primary modality for noninvasive electrophysiological recordings of the brain is the

scalp electroencephalogram (EEG). EEG is acquired via metallic electrodes placed directly

on the scalp. EEG electrode diameters are generally on the order of centimeters and the

number of electrodes used can be anywhere from 2, giving a single bipolar channel, to 256

- or even higher for detecting subcortical activity and source localization [80]. In order to

provide conductivity through hair, the electrodes are either filled with electrolytic gel (i.e.,

wet electrodes) or have barbs designed to pass through hair (i.e., dry electrodes), as shown

in Figure 2D.

Due to the signal attenuation caused by the skull and scalp layers, noninvasive recordings

are lower in amplitude (10-100 µV) and are more prone to movement and muscle artifacts

compared to invasive recordings. The use of active electrodes, which contain pre-amplifier

circuitry embedded in the electrode housing, can effectively boost the signal and mitigate

certain noise and artifacts in the recordings.

EEG signals for direct BCI control can broadly be categorized as active or reactive [102],

depending on whether the brain activity is primarily modulated by endogenous or exogenous

means, respectively.

2.2.1 Active Control Signals

The most commonly used active control signals for robotic control applications are event-

related desynchronization/synchronization (ERD/ERS) [73] and sensorimotor rhythms (SMRs)

[79]. These are more naturalistic control signals as they are generated from the motor cortex

during actual and imagined movements.
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SMRs are idling rhythms occurring in the alpha band of the motor cortex during rest,

which can be observed in an estimated 80% of the population [79]. To distinguish from

unrelated alpha band activity, these are often referred to as mu rhythms [3]. A defining

characteristic of these rhythms is that the amplitude is attenuated over the corresponding

area of the motor cortex during continued actual or imagined movements [72]. Related

modulations can also be observed in the beta and gamma bands, although it is not clear

whether these are contributed by distinct neural processes or are simply, in part, a byproduct

of the unique temporal morphology of mu rhythms [58]. Users can learn to modulate SMR

amplitudes continuously to achieve continuous, dimensional BCI control (e.g., imagine right

hand movement to move a cursor to the right) [99]. The temporal, spatial, and spectral

characteristics and how they can be mapped to dimensional BCI control are illustrated in

Figure 5A.

ERD refers to the transient decrease in alpha-band power over the motor cortex associated

with the onset of isolated movement or imagery, followed by the transient ERS increase as

the motor activity returns to the resting state, as shown in Figure 5B. Thus, this transient

activity can be used as a discrete switch, for instance to activate/deactivate a hand grasp

orthotic [74].

Other active control signals exist, such as alpha-band modulation during cognitive pro-

cesses such as mental math or object rotation [39, 91]. However, while these modulations

can be reliably detected in the EEG, they require the user to perform a mental task that is

not directly related to the primary robotic control task. This can be unnatural, unintuitive,

and distracting, and is ultimately not an ideal control signal for a practical assistive device.

While ERD/ERS and SMR represent the most natural and intuitive scalp EEG activity

for dimensional control of robotic or assistive devices, these signals tend to be non-stationary

and significant task training may be required for users to reliably modulate these signals to

achieve practical device control [57].
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Figure 5: Active control signals. (A) Topographical and spectral representations of sen-
sorimotor rhythms for dimensional control using left and right hand movement/imagery.
(B) Event-related synchronization/desynchronization of the alpha band corresponding to an
isolated movement/imagery.

2.2.2 Reactive Control Signals

Reactive control signals result from predictable changes in brain activity generated from the

user’s attention to specific sensory stimuli that are mapped to aspects of the control task [65].

These predictable changes in brain activity are known as stimulus-evoked potentials (SEPs).

SEPs can either be transient, which are generally time-locked with the sensory stimulus and

resolve on the order of a second, or steady-state, which continue as long as attention to the

stimulus is maintained.

One of the earliest scalp EEG BCIs is the P300 Speller [22]. It operates based on the
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brain’s response to a rare or novel sensory stimulus. This brain response is known as an

event-related potential (ERP), which is a specific type of SEP that includes a cognitive

component (opposed to a purely sensory reflex). In this case, the cognitive component is the

recognition that the stimulus is rare or novel.

In a simple P300 Speller paradigm, the user is presented with a matrix of flashing symbols

on a computer monitor, for instance, similar to a visual keyboard. The user attends to the

desired symbol as each symbol is flashed in a random sequence. The general concept is

illustrated in Figure 6. Because the user does not know when the desired symbol will be

flashed, an ERP is generated when the symbol is flashed while the user maintains fixed

attention. Multiple ERPs must be accumulated over multiple stimulus sequences to reliably

represent the characteristic brain response and determine the desired symbol. This process

can be made more efficient via row/column flashing [22], or a variety of other enhancements

to the original paradigm [42, 86]. While the original P300 Speller paradigm was based on

visual attention, auditory [24] or tactile [7] attention can also be utilized with decreased

performance compared to visual paradigms.

Effectively, such paradigms provide discrete command selection, equivalent to a computer

keyboard - albeit at a much slower rate (∼4-5 symbols per minute) [86]. These commands

can be mapped to achieve discrete dimensional [103] or goal-oriented [40] control of a robot,

for example.

To achieve continuous dimensional control, steady-state sensory evoked potentials can be

used, the most practical being the steady-state visual evoked potential (SSVEP) [60]. Unlike

transient evoked potentials resulting from a single stimulus event, the steady-state evoked

potentials result from a repeating stimulus pattern, such as a blinking light. As such, rather

than generating a transient EEG response, predictable, continuous repeating EEG patterns

over the occipital cortex are generated with attention to the repeating stimulus patterns.

These EEG patterns manifest as distinct spectral peaks in the frequency domain that can

be reliably identified and tracked, in contrast to the time-domain techniques used to identify
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transient evoked potentials.

A typical SSVEP interface consists of a spatial array of individual lights or symbols on

a screen, each concurrently repeating with a unique temporal flashing pattern and mapped

to a control command, as shown in Figure 6. When the user focuses attention to a spe-

cific light/symbol, the brain activity unique to that symbol is detected and the associated

command is executed. In contrast to transient evoked potentials, the command can be

maintained with continued attention to the stimulus and can be readily changed by shifting

attention to a different stimulus to execute the associated control command in a continuous

fashion. This can enable joystick-like dimensional control of a robotic device with latency on

the order of 0.5-1 seconds [93]. It is also possible to achieve high communication rates with

discrete selection via keyboard-like interface using SSVEP and related variants [6, 15]. As

with transient responses, BCIs have been developed that utilize steady-state auditory [32]

and tactile (somatosensory) [1] potentials.

Control paradigms that rely on visual evoked potentials have several limitations. Fore-

most, performance can drastically decrease with inability to control eye movements [8, 87],

which is the case for many locked-in patients. Also, these interfaces often create a visual

cacophony, can be unnatural, fatiguing, and can be distracting from the primary control

task [92], which can make them inconvenient and impractical for long-term use.

3 Applications to Assistive Robotics and Prosthetics

3.1 Upper-limb Prosthetics

Foundational work exploring the application of BCI for control of robotic arms was first

performed in animal models. In 1999, Chapin et al. showed how rats could position a single

degree of freedom (DoF) robotic arm in real time using a BCI driven by neuronal population

activity in the primary motor cortex and ventrolateral thalamus [13]. Just a year later,

Wessberg et al. demonstrated an open-loop BCI for real-time control of 3 DoF robotic arms,
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Figure 6: Reactive control signals for a visual paradigm. Six targets presented on a computer
monitor flash independently according to (1) a steady-state pattern with a unique stimulus
frequency for each target or (2) transient pulses with a unique stimulus onsets for each
target. The user focuses visual attention on a single target and (1) the EEG over the
occipital cortex oscillates at the target stimulus frequency (plus harmonics) for the steady-
state stimulus scenario or (2) an EEG evoked potential can be detected over the visual cortex
(and potentially other areas) with respect to the stimulus onset for the transient stimulus
scenario.

which better represent the complex arm movements needed to accomplish a reach-and-grasp

task [95]. In their approach, cortical neural ensemble activity, recorded from owl monkeys

who received no feedback while completing reach-and-grasp tasks, was used to predict three-

dimensional hand trajectories that controlled robotic movement. Further work succeeded

in closing the loop for continuous neuronal control of robotic prostheses by non-human

primates by introducing visual feedback, which resulted in stabilization of performance and

more effective learning of neuromodulation [12, 52].

Velliste et al. demonstrated embodied control, involving real-time interaction with the

physical environment, of a 4 DoF prosthetic arm using cortical signals in a closed loop system

[88]. Modulation of cortical signals represented not only the velocity of the end effector in

Cartesian space, but also the aperture velocity of the gripper’s fingers. This BCI enabled

monkeys to continuously control the prosthetic device to reach to a food target, grasp the

food, and then feed themselves. Physical interaction with the environment enabled displays

of embodiment via behaviors inessential to task completion. For example, the monkey treated
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the prosthetic arm as if it was its own by moving the gripper to its mouth in order to lick it

instead of reaching to grasp the food target.

Initial results for BCI control of prosthetic devices by humans was demonstrated by

Hochberg et al. in their report describing the first participant in a trial for BrainGate, a

neuromotor prosthetic system consisting of a single cortically implanted, 96-channel sensor

and external signal processors [33]. In this work, a patient with tetraplegia was enabled

to grasp and move objects using a robotic arm controlled via neuronal ensemble spiking

activity.

A follow up clinical trial of the BrainGate system, dubbed BrainGate2, showed how par-

ticipants from the original BrainGate trial were able to use continuous neuronal ensemble

control to operate a robotic arm for three-dimensional reach and grasp movements [34]. The

BCI system enabled one participant with tetraplegia to, completely independently, manip-

ulate and drink from a bottle for the first time in 14 years, as shown in Figure 7(left).

The results from this work are achieved in participants whose intracortical arrays were im-

planted more than 5 years prior, which is promising evidence that the development of neural

interfaces using chronically implanted intracortical sensors may be feasible.

Independent of the BrainGate trials, Collinger et al. demonstrated how a human with

tetraplegia could control a 7 DoF prosthetic arm using an intracortical activity recorded

from two, 96-channel arrays implanted in the motor cortex [17]. Continuous control was

achieved by relating neural firing rates and movement velocity in each control dimension

(3D translation, 3D orientation, 1D grasp) using a linear model, as previously demonstrated

in non-human primate studies [88]. The participant was able to achieve both clinically sig-

nificant improvement of function and complex, coordinated movements, on-par with that of

able-bodied people, sustained over several weeks of testing. Figure 7B shows the participant

feeding herself using the robotic arm.

In follow up work with the same patient, Wodlinger et al. expanded the 1D grasp,

which simply allowed binary open/close, to now include four dimensions to control hand
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shape, which introduced a new emphasis on object-interaction behavior [97]. The study

demonstrated that object interaction during calibration of neural activity to intended control

behaviors was important to achieve 10 dimensional operation of a prosthetic arm using the

previously demonstrated linear model for neural decoding [17].

More recent work has considered the role of bidirectional BCI, which integrate both sen-

sory and motor modalities for robust restoration of function [36], for the control of robotic

arms [23, 76, 94]. Flesher et al. builds on previous demonstrations of high-dimensional con-

tinuous control of robotic arms using cortical activity and visual feedback alone [17, 97] by

introducing tactile feedback [23]. Tactile percepts were evoked by intracortical microstimu-

lation of the somatosensory cortex based on contact and grasp forces measured via sensors in

the robotic arm, resulting in perceived tactile sensations at the palm and fingers. A partici-

pant with tetraplegia achieved higher performance when performing grasp-and-reach tasks,

namely through reduction of grasp attempt time, with tactile sensation relative to that using

BCI systems with only visual feedback.

Figure 7: Real-time BMI prosthetic arm control using microelectrode arrays implanted in
the motor cortex. (Left) BrainGate [34]. (Right) University of Pittsburgh [17].

3.2 Orthotics and Exoskeletons

The application of BCI for the control of orthotics and exoskeletons has also been explored,

often in the context of rehabilitation [54]. We restrict the scope of this chapter to focus only
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on the control of orthotics or exoskeletons using BCI, not on the use and assessment of these

systems for neurological rehabilitation.

One of the earliest demonstrations of BCI control of orthoses was by Pfurtscheller et al.

[71]. Using a EEG based BCI, a tetraplegic patient was able to operate a hand orthosis.

The participant was trained to modulate mu oscillations via a motor imagery approach,

allowing the user to close or open the orthosis by imagining movement of their feet or hands,

respectively. More recently, P300 based BCI systems for hand-orthosis control have also been

demonstrated [82, 83]. Delijorge et al. [18] introduced a P300-based BCI to allow patients

with amyotrophic lateral sclerosis (ALS) to control a robotic hand orthosis. Compared to

previous work that only allows binary opening/closing of the hand [71, 82], this system

enabled patients to control the movement of individual fingers.

EEG-based BCIs have also been demonstrated to control lower-limb exoskeletons. Kwak

et al. [49, 50] presented an asynchronous SSVEP-based BCI system that controlled a leg

exoskeleton to provide healthy participants with support while walking forward, turning,

sitting, and standing. The oscillatory nature of SSVEPs make them a reasonable candidate

to decode user intention for exoskeleton control despite the poor signal-to-noise ratio in the

EEG signal caused by the introduction of additional artifacts while walking or broadband

distortion by the exoskeleton. SSVEP based control of lower limb prostheses has been

replicated by Wang et al. [90]. In the same study, motor imagery based control was also

demonstrated and high accuracy performance was achieved by both approaches. In an

approach that can be directly applied to knee orthoses, Murphy et al. presented ERD-based

control to lock and unlock a prosthetic knee for the swing phase of gait or for sitting [67].

In an initial clinical proof-of-concept, Benabid et al. [5] showed how an individual with

tetraplegia could control a four-limb, 14 DoF exoskeleton using an ECoG-based BCI. This

exoskeleton is depicted in Figure 8. ECoG signals were recorded from the upper limb senso-

rimotor areas of the brain using two, epidural recorders implanted bilaterally. The number

of degrees of freedom the patient was able to control increased gradually with training over a
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period of 20 months, culminating in the ability to perform multi-limb action to complete 8D,

bimanual tasks. Over the total 24 month length of the study, recalibration of the BCI was

only required after considerably long intervals of time — more than 1.5 months. The results

of this study suggest that ECoG may be a promising modality to enable higher dimensional

control of exoskeletons by individuals with tetraplegia.

Figure 8: BCI-controlled exoskeleton. Quadriplegic individual moves with the assistance of
robotic arms and legs controlled by decoding motor cortex activity in real-time. The brain
signals are recorded with two 64-electrode ECoG implants [5].

3.3 Wheelchairs, Telepresence, and Assistive Robots

BCI controlled wheelchairs have the potential to improve the mobility of individuals with

disabilities or movement disorders. Previously demonstrated BCI wheelchairs have largely

been noninvasive, including P300 [37, 77], motor imagery [10, 84], or ERD/ERS [35] based

paradigms. In the motor imagery approach developed by Carlson and Millan [10], the user

was able to provide turning commands via the BCI system to a forward moving wheelchair
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equipped with automatic obstacle avoidance.

Waytowich and Krusienski [93] introduced a SSVEP-based BCI, utilizing signals recorded

from 5-channel dry-electrode EEG, for continuous control of a motorized wheelchair. Stimuli

were superimposed over a live video feed of the environment, presented on an Android phone

mounted in front of the user’s face, and were placed on the peripheral edges of the screen, as

shown in Figure 9D. This approach allows the user to observe both the control stimuli and

the environment in front of them with latencies on the order of 0.5-1 second.

While control of prosthetic or assistive robots generally focuses on allowing users to

interact with their local environment, telepresence BCI systems can enable users to interact

with their global environment through a remotely controlled robotic device. noninvasive

telepresence BCI systems have been demonstrated to control a variety of devices including

quadcopters [51], wheelchairs [93] (Figure 9C), robotic arms [95], humanoid robots [4], and

mobile robots [11, 53, 61], among others. Millan et al. [61] showed how a mobile robot could

be controlled using an asynchronous EEG-based BCI system to move between rooms of a

simulated house. To achieve precise control despite the low bit rate of the EEG-based BCI,

the user’s brain activity was associated with high level commands executed autonomously

by the robot based on a behavior-based controller. BCI control of the mobile robot achieved

similar task performance to manual control.

In this section, we distinguish BCI control of robotic arms as upper-arm prosthetics from

their usage as assistive robots. As previously described, the former aims to achieve high-

dimensional, continuous control that mimics natural function, typically using invasive BCI

systems that decode cortical activity to control joint velocities. On the other hand, the

latter consists of noninvasive BCI systems for goal oriented or partially automated control

[28, 40, 56]. For example, Johnson et al. achieved high level control of a 6 DoF robotic

arm using an adapted P300 Speller interface [40], as shown in Figure 9A. This goal-oriented

approach leverages the discrete selection capabilities of P300 Spellers, allowing users to

select a target for the robot’s end effector to move to its workspace, represented as a 4x4
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grid. Similar to Waytowich et al. [93], an SSVEP approach was applied for continuous

control of a robotic arm for a real-time writing application [28] (Figure 9B).

Some research has considered how near-continuous high-dimensional control of robotic

arms can be achieved using noninvasive BCI systems. Meng et al. demonstrated a non-

invasive ERD/ERS-based approach to control a robotic arm to complete three-dimensional

reach and grasp tasks [59]. High accuracy continuous control of a device in 3D space requires

the user to have three independent pairs of motor strategies, which has not been robustly

demonstrated using noninvasive EEG-based BCI alone, although some previous work used

3D gaze tracking in combination with SMR-based BCI to achieve such control [69]. This

study achieved the same outcomes of fluid 3D control through the combination of two se-

quential low dimensional control commands. In this approach, the user first continuously

controls the end effector within a 2D plane to hover above some target object. Then, the 2D

end effector position is held constant by the system while the user controls the end effector

in the third dimension to complete the grasp. This two-step approach, while more time

consuming than 3D fluid control, is able to achieve 3D reach-and-grasps while reducing the

number of DoF the noninvasive BCI needs to simultaneously interpret.

4 Artificial Intelligence and Shared Control

Artificial intelligence employs sensors and processing algorithms to make decisions in re-

sponse to environmental variables, often being implemented to adapt and learn new behav-

iors. Due to a variety of factors, such as limitations of brain activity sensing technologies,

the current state of BCI control generally does not allow for perfectly precise and reliable

execution of device commands. In particular, as the primary input for direct device control,

current scalp-based EEG BCIs are generally slower and less reliable than using any residual

volitional muscle movement as a simple binary control switch, for instance, especially for

safety-critical applications. Thus, scalp-based BCIs are generally only practical for individ-
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Figure 9: EEG-based robotics control. (A) Goal-oriented control of a pick-and-place robotic
arm via a P300 paradigm [40]. (B) Continuous, real-time control of a robotic arm for writing
via an SSVEP paradigm [28]. (C) Continuous, real-time control of a telepresence robot
(remotely operated wheelchair with streaming camera view) via a remote SSVEP paradigm
[93]. (D) Continuous, real-time control of a motorized wheelchair via an SSVEP paradigm
displayed on a handheld device including pass-through camera view [93].

uals that are in or nearing a locked-in state without volitional muscle control, such as those

suffering from late-stage ALS or brain-stem stroke [98]. Furthermore, for individuals in this

state, the practical applications of robotic control become significantly more limited and

specialized in terms of meeting their immediate basic needs.

To help mitigate the limitations of BCI as the primary controller, artificial intelligence

can be employed to achieve shared control where some aspects of the robotic control are

learned and automated by the machine, such as obstacle avoidance, trajectory planning,

object interactions, balancing, etc., while other aspects such as navigation or goal-oriented

commands, for instance, remain under the user’s direct control. This can provide interac-
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tions that are more functional, natural, convenient, and/or less demanding for the user. In

this context, the degree of shared control can range from full user (BCI) control to full au-

tonomous (AI) control, with the relative proportion of user control depending on the nature

and constraints of the application. Additionally, it is possible to dynamically vary the degree

of user control depending on task demands and user workload, for example.

Depending on the application, artificial intelligence implementations can use a variety of

sensing modalities mounted on or in proximity to the robot to acquire data for building a

model of the environment. Such sensors may include cameras, optical sensors, accelerome-

ters, ultrasonic sensors, and pressure sensors, for example.

Artificial intelligence is generally achieved via machine learning algorithms that imple-

ment supervised, unsupervised, or reinforcement learning strategies [47]. Supervised learning

is when the system is trained using labeled data that corresponds to predefined states, ac-

tions, goals, etc. Unsupervised learning is when the data is not labeled, either because labels

are not available or do not exist. Thus, unsupervised learning must find consistent patterns

in the data to create or infer labels. Reinforcement learning can be applied when there are

multiple approaches for achieving the same end goal. Here, specific actions are associated

with a reward or penalty and, based on accumulated experience, the system learns appro-

priate sequences of actions to achieve the desired outcome by maximizing rewards and/or

minimizing penalties.

Intelligent shared control has been implemented using a variety of strategies. For exam-

ple, error-related potentials (ErrPs), ERPs that occur in response to observed errors [48],

have been introduced as a feedback signal to train intelligent controllers to achieve optimal

behaviors for a given task. Interactive reinforcement learning using ErrPs as implicit feed-

back has been shown for human-robot interaction (HRI) [46], including for co-adaptation in

HRI [21]. ErrPs have also been used to teach neuroprostheses optimal control policies for

goal-directed movement, allowing users to give high-level commands that the trained policy

develops low-level plans to execute [38].
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Computer vision based strategies for shared control have also been demonstrated [85, 101].

Muelling et al. [66], introduced a shared control framework that combines computer vision,

intent prediction, and human-robot control arbitration to reduce perceived difficulty when

using BCI to control a 7 DoF robotic arm. Vision based target-pose estimation can enable

the robot to autonomously grasp targets once a person has moved its end effector close to

the target via BCI control [101]. Applying target prediction in tandem with target-pose

estimation allowed a shared controller to infer user intent and dynamically optimize user

control commands to provide corrections while reaching or to autonomously grasp or place

an object [9].

In the context of wheelchair control and mobile manipulators, shared controllers are often

used to autonomously move to a user defined location in space [37], to assist with obstacle

avoidance during user control [10], or some combination of these two approaches [19, 20, 30].

More recent approaches have considered how to dynamically modify when or to what extent

wheelchair behavior is commanded by the human user or by a robot controller. Deng et al.

showed how a Baysiean shared BCI system for wheelchair control can intelligently arbitrate

human and robot control commands generated via kinematic modeling and vision-based path

planning [19]. Building off of this work, Deng et al. [20] propose a self-adaptive self control

system that evaluates subject’s control ability from single trial SSVEP to modify the level

of assistance provided by the robot for wheelchair control.

5 Current Challenges and Future Prospects

With the aim of restoring natural function via a neuroprosthetic device (i.e., high DoF,

continuous control), which will generally require invasive recordings from a large number of

individual neurons, the existing challenges are distinctly different compared to that of a low

DoF assistive device that can be achieved via noninvasive means. For the former, popula-

tion coding has proven to very reliably decode movement trajectories for motor prosthetics.
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However, there are still open questions regarding the practicality and long-term viability

of current approaches [75], particularly with respect to the surgical risks. Furthermore, to

move toward a fully-transparent motor prosthetic, information from an increasing number

of neurons must be incorporated. Significant efforts are going into the development of high-

density recording devices [41, 68], including practical implantation and long-term stability

considerations. Access to larger numbers of neurons requires new and improved large-scale

decoding algorithms which will, in turn, require additional behavioral data for training. Fur-

thermore, to better model natural neuroplasticity in the brain, such models would likely need

to be capable of adaptation, requiring data from appropriately designed closed-loop experi-

ments. Because the user must also adapt to the model feedback, a precarious co-adaptation

scenario is created for which closed-loop experiments would need to carefully examine the

nature, timing, dynamics, and accuracy of the feedback [16].

Another critical consideration for developing fully-natural motor prosthetics is the in-

tegration of sensory feedback, including tactile, visual, proprioceptive, etc [23]. This re-

quires a bi-directional BCI capable of providing coordinated and localized brain stimulation,

which further complicates the aforementioned issues of electrode densities, locations, adap-

tive model development, and closed-loop experiments.

For lower-DoF assistive noninvasive devices, as mentioned in Section 4, the primary

limitation lies with the practicality and fidelity of noninvasive recordings - particularly if

the user has any residual volitional muscle control. Thus, such BCIs are generally only

practical for locked-in users and the development of improved goal-oriented and shared-

control methods holds the most promise until significant advances are made in noninvasive

recording technologies. However, it must also be recognized that, as the BCI moves further

toward goal-oriented or shared control, the user may lose a sense of agency relative to when

they have truly continuous control. Otherwise, noninvasive BCIs do hold promise for motor

rehabilitation [54], as well as potential integration of passive cognitive-state estimates such

as cognitive workload, attention, affect, etc. into the BCI feedback control loop [2].
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Overall, the BCI field is rapidly advancing and is beginning to receive serious commercial

and investor interest, which is further accelerating the advances. With the recent develop-

ments in large-scale neural recording modalities and machine learning methods to handle the

resulting ‘big data’, practical BCI-controlled motor prosthetics, exoskeletons, and assistive

robotics for disabled end-users will become an eventual reality.
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and F. Popescu. On the feasibility of using motor imagery EEG-based brain–computer
interface in chronic tetraplegics for assistive robotic arm control: a clinical test and
long-term post-trial follow-up. Spinal Cord, 50:599–608, 2012.

[70] T. Oxley, P. Yoo, G. Rind, S. M. Ronayne, C. M. S. Lee, C. Bird, V. Hampshire,
R. Sharma, A. Morokoff, D. Williams, C. Macisaac, M. Howard, L. Irving, I. Vrljic,
C. J. Williams, S. E. John, F. Weissenborn, M. Dazenko, A. Balabanski, D. A. Frieden-
berg, A. Burkitt, Y. Wong, K. Drummond, P. Desmond, D. Weber, T. Denison,

29



L. Hochberg, S. Mathers, T. J. O’Brien, C. May, J. Mocco, D. Grayden, B. Campbell,
P. Mitchell, and N. Opie. Motor neuroprosthesis implanted with neurointerventional
surgery improves capacity for activities of daily living tasks in severe paralysis: first
in-human experience. Journal of Neurointerventional Surgery, 13:102 – 108, 2020.

[71] G. Pfurtscheller, C. Guger, G. R. Müller, G. Krausz, and C. Neuper. Brain oscillations
control hand orthosis in a tetraplegic. Neuroscience Letters, 292:211–214, 2000.

[72] G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer. EEG-based discrimi-
nation between imagination of right and left hand movement. Electroencephalography
and clinical neurophysiology, 103 6:642–51, 1997.

[73] G. Pfurtscheller and F. L. D. Silva. Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clinical Neurophysiology, 110:1842–1857, 1999.

[74] G. Pfurtscheller, T. Solis-Escalante, R. Ortner, P. Linortner, and G. Muller-Putz.
Self-paced operation of an SSVEP-based orthosis with and without an imagery-based
“brain switch:” a feasibility study towards a hybrid BCI. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 18:409–414, 2010.

[75] V. S. Polikov, P. A. Tresco, and W. M. Reichert. Response of brain tissue to chronically
implanted neural electrodes. Journal of Neuroscience Methods, 148:1–18, 2005.

[76] K. M. Quick, J. M. Weiss, F. Clemente, R. A. Gaunt, and J. L. Collinger. Intra-
cortical microstimulation feedback improves grasp force accuracy in a human using a
brain-computer interface*. 2020 42nd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), pages 3355–3358, 2020.

[77] B. Rebsamen, E. Burdet, C. Guan, H. Zhang, C. L. Teo, Q. Zeng, M. H. Ang, and
C. Laugier. A brain-controlled wheelchair based on P300 and path guidance. The First
IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomecha-
tronics, 2006. BioRob 2006., pages 1101–1106, 2006.

[78] G. Schalk and E. Leuthardt. Brain-computer interfaces using electrocorticographic
signals. IEEE Reviews in Biomedical Engineering, 4:140–154, 2011.

[79] D. Schomer and F. L. D. Silva. Niedermeyer’s electroencephalography: Basic principles,
clinical applications, and related fields. 2010.

[80] M. Seeber, L. Cantonas, M. Hoevels, T. Sesia, V. Visser-Vandewalle, and C. Michel.
Subcortical electrophysiological activity is detectable with high-density EEG source
imaging. Nature Communications, 10, 2019.

[81] J. Shih, D. Krusienski, and J. Wolpaw. Brain-computer interfaces in medicine. Mayo
Clinic proceedings, 87 3:268–79, 2012.

[82] A. Stan, D. Irimia, N. Botezatu, and R. Lupu. Controlling a hand orthosis by means of
P300-based brain computer interface. 2015 E-Health and Bioengineering Conference
(EHB), pages 1–4, 2015.

30



[83] N. Syrov, K. A. Novichikhina, D. A. Kir’yanov, S. Y. Gordleeva, and A. Y. Kaplan.
The changes of corticospinal excitability during the control of artificial hand through
the brain–computer interface based on the P300 component of visual evoked potential.
Human Physiology, 45:152–157, 2019.

[84] K. Tanaka, K. Matsunaga, and H. O. Wang. Electroencephalogram-based control of
an electric wheelchair. IEEE Transactions on Robotics, 21:762–766, 2005.

[85] J. Tang and Z. Zhou. A shared-control based BCI system: For a robotic arm control.
2017 First International Conference on Electronics Instrumentation & Information
Systems (EIIS), pages 1–5, 2017.

[86] G. Townsend, B. K. LaPallo, C. Boulay, D. Krusienski, G. E. Frye, C. K. Hauser, N. E.
Schwartz, T. Vaughan, J. Wolpaw, and E. Sellers. A novel P300-based brain–computer
interface stimulus presentation paradigm: Moving beyond rows and columns. Clinical
Neurophysiology, 121:1109–1120, 2010.

[87] M. Treder and B. Blankertz. Covert attention and visual speller design in an ERP-
based brain-computer interface. Behavioral and Brain Functions : BBF, 6:28 – 28,
2010.

[88] M. Velliste, S. Perel, M. Chance Spalding, A. S. Whitford, and A. B. Schwartz. Cortical
control of a prosthetic arm for self-feeding. Nature, 453:1098–1101, 2008.

[89] R. J. Vetter, J. C. Williams, J. F. Hetke, E. A. Nunamaker, and D. R. Kipke. Chronic
neural recording using silicon-substrate microelectrode arrays implanted in cerebral
cortex. IEEE Transactions on Biomedical Engineering, 51:896–904, 2004.

[90] C. Wang, X. Wu, Z. Wang, and Y. Ma. Implementation of a brain-computer interface
on a lower-limb exoskeleton. IEEE Access, 6:38524–38534, 2018.

[91] Q. Wang and O. Sourina. Real-time mental arithmetic task recognition from EEG
signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21:225–
232, 2013.

[92] N. R. Waytowich and D. Krusienski. Spatial decoupling of targets and flashing stimuli
for visual brain-computer interfaces. Journal of neural engineering, 12 3:036006, 2015.

[93] N. R. Waytowich and D. Krusienski. Development of an extensible SSVEP-BCI
software platform and application to wheelchair control. 2017 8th International
IEEE/EMBS Conference on Neural Engineering (NER), pages 259–532, 2017.

[94] S. M. Wendelken, D. M. Page, T. S. Davis, H. A. C. Wark, D. T. Kluger, C. C. Duncan,
D. J. Warren, D. T. Hutchinson, and G. A. Clark. Restoration of motor control and
proprioceptive and cutaneous sensation in humans with prior upper-limb amputation
via multiple Utah slanted electrode arrays (USEAs) implanted in residual peripheral
arm nerves. Journal of NeuroEngineering and Rehabilitation, 14, 2017.

31



[95] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin,
J. B. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. L. Nicolelis. Real-time prediction
of hand trajectory by ensembles of cortical neurons in primates. Nature, 408:361–365,
2000.

[96] F. Willett, Donald T. Avansino, L. Hochberg, J. Henderson, and K. Shenoy. High-
performance brain-to-text communication via handwriting. Nature, 593 7858:249–254,
2021.

[97] B. Wodlinger, J. E. Downey, E. C. Tyler-Kabara, A. B. Schwartz, M. L. Boninger,
and J. L. Collinger. Ten-dimensional anthropomorphic arm control in a human brain-
machine interface: difficulties, solutions, and limitations. Journal of neural engineering,
12 1:016011, 2015.

[98] J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, and T. Vaughan.
Brain–computer interfaces for communication and control. Clinical Neurophysiology,
113:767–791, 2002.

[99] J. Wolpaw and D. McFarland. Control of a two-dimensional movement signal by a
noninvasive brain-computer interface in humans. Proceedings of the National Academy
of Sciences of the United States of America, 101 51:17849–54, 2004.

[100] J. Wolpaw and E. Wolpaw. Brain-computer interfaces: Principles and practice. 2012.

[101] Y. Xu, H. Zhang, L. Cao, X. Shu, and D. Zhang. A shared control strategy for reach and
grasp of multiple objects using robot vision and noninvasive brain-computer interface.
IEEE Transactions on Automation Science and Engineering, pages 1–13, 2020.

[102] T. Zander and Christian Kothe. Towards passive brain-computer interfaces: applying
brain-computer interface technology to human-machine systems in general. Journal of
neural engineering, 8 2:025005, 2011.

[103] Jing Zhao, Wei Li, and Mengfan Li. Comparative study of ssvep- and p300-based
models for the telepresence control of humanoid robots. PLoS ONE, 10, 2015.

32


